来源:ballbet贝博网站app 发布时间:2024-07-25 08:47:44 阅读量:1
目前,考虑到体积,成本等因素,大多数AC/DC变换器输入整流滤波采用电容输入式滤波方式,电路原理如图1所示。由于电容器上电压不能跃变,在整流器上电之初,滤波电容电压几乎为零,等效为整流输出端短路。如在最不利的情况(上电时的电压瞬时值为电源电压峰值)上电,则会产生远高于整流器正常工作电流的输入浪涌电流,如图2所示。当滤波电容为470F并且电源内阻较小时,第一个电流峰值将超过100A,为正常工作电流峰值的10倍。
浪涌电流会造成电源电压波形塌陷,使得供电质量变差,甚至会影响其他用电设备的工作以及使保护电路动作;由于浪涌电流冲击整流器的输入熔断器,使其在若干次上电过程的浪涌电流冲击下而非过载熔断。为避免这类现象发生,而不得不选用更高额定电流的熔断器,但将出现过载时熔断器不能熔断,起不到保护整流器及用电电路的作用;过高的上电浪涌电流对整流器和滤波电容器造成不可恢复的损坏。因此,必须对带有电容滤波的整流器输入浪涌电流加以限制。
限制上电浪涌电流最有效的方法是,在整流器与滤波电容器之间,或在整流器的输入侧加一负温度系数热敏电阻(NTC),如图3所示。利用负温度系数热敏电阻在常温状态下具有较高阻值来限制上电浪涌电流,上电后由于NTC流过电流发热使其电阻值降低以减小NTC上的损耗。这种方法虽然简单,但存在的问题是限制上电浪涌电流性能受环境和温度和NTC的初始温度影响,在环境和温度较高或在上电时间间隔很短时,NTC起不到限制上电浪涌电流的作用,因此,这种限制上电浪涌电流方式仅用于价格低的微机电源或其他低成本电源。而在彩色电视机和显示器上,限制上电浪涌电流则采用串一限流电阻,电路如图4所示。最常见的应用是彩色电视机,这种方法的优点是简单,可靠性高,允许在宽环境和温度范围内工作,其缺点是限流电阻上有损耗,降低了电源效率。事实上整流器上电处于稳态工作后,这一限流电阻的限流作用已完成,仅起到消耗功率、发热的负作用,因此,在功率较大的开关电源中,采用上电后经一定延时后用一机械触点或电子触点将限流电阻短路,如图5所示。这种限制上电浪涌电流方式性能好,但电路复杂,占用体积较大。为使应用这种抑制上电浪涌电流方式,象仅仅串限流电阻一样方便,本文推出开关电源上电浪涌电流抑制模块。
将功率电子开关(可以是MOSFET或SCR)与控制电路封装在一个相对很小的模块(如400W以下为25mm×20mm×11mm)中,引出3~4个引脚,外接电路如图6(a)所示。整流器上电后最初一段时间,外接限流电阻抑制上电浪涌电流,上电浪涌电流结束后,模块导通将限流电阻短路,这样的上电过程的输入电流波形如图6(b)所示。很显然上电浪涌电流峰值被有效抑制,这种上电浪涌电流抑制模块需外接一限流电阻,用起来很不方便,如何将外接电阻省掉将是电源设计者所希望的。
有人提出一种无限流电阻的上电浪涌电流抑制电路如图7(a)所示,其上电电流波形如图7(b)所示,其思路是将电路设计成线形恒流电路。实际电路会由于两极放大的高增益而出现自激振荡现象,但不影响电路工作。从原理上讲,这种电路是可行的,但在使用时则有如下问题难以解决:如220V输入的400W开关电源的上电电流至少要达到4A,如上电时刚好是电网电压峰值,则电路将承受4×220×=1248W的功率。不仅远超出IRF840的125W额定耗散功率,也远超出IRFP450及IRFP460的150W额定耗散功率,即使是APT的线W的额定耗散功率。因此,如采用IRF840或IRFP450的结果是,MOSFET仅能承受有限次数的上电过程便可能被热击穿,而且从成本上看,IRF840的价格可接受,而IRFP450及IRFP460则难以接受,APT的线性MOSFET更不可能接受。
欲真正实现无限流电阻的上电浪涌电流抑制模块,需解决功率器件在上电过程的功率损耗问题。作者推出的另一种上电浪涌电流抑制模块的基本思想是,使功率器件工作在开关状态,从而解决了功率器件上电过程中的高功率损耗问题,而且电路简单。电路如图8(a)和图8(b)所示,上电电流波形如图8(c)所示。
A模块在400W开关电源中应用时,外壳温升不大于40℃,允许间隔20ms的频繁重复上电,最大峰值电流不大于20A,外观尺寸25mm×20mm×11mm或35mm×25mm×11mm。
B模块和C模块用于800W的额定温升不大于40℃,重复上电时间间隔不限,上电峰值电流为正常工作时峰值电流的3~5倍,外观尺寸35mm×30mm×11mm或者50mm×30mm×12mm。
开关电源上电浪涌电流抑制模块的问世,由于其外接电路简单,体积小给开关电源设计者带来了极大方便,特别是无限流电阻方案,国内外尚未见到相关报道。同时作者也将推出其它冲击负载(如交流电机及各种灯类等)的上电浪涌电流抑制模块。
大功率DC/DC开关电源并联中遇到的主体问题就是电流不均,特别在加重负载时,会引起较为严重的后果。普通的均流方法是采取独立的PWM控制器的各个模块,通过电流采样反馈到PWM控制器的引脚FB或者引脚COMP,即反馈运放的输入或者输出脚来凋节输出电压,进而达到均流的目的。显然,电流采样是一个核心问题:用电阻采样,损耗比较大,电流放大后畸变比较大;用电流传感器成本高;用电流互感器采样不是很方便,州时会使电流失真。本文提出了一种新型的、方便的、无损的电流采样方法,并在这种电流检测的新方法的基础上实现了并联系统的均流。
如前所述,在均流系统中一些传统的电流采样力法都或多或少有些缺点。而本文提出的这种新的电流采样力法,既简单方便,又没有损耗。
下面以图l所示的Buck电路为例,说明这种新的电流检测的新方法的原理和应用。
电流检测电路由一个简单的RC网络组成,没流过L的电流为iL,流过C的电流为ic,L两端的电压为vL,输出电压为vo上电压为vc,则有vL+iLR1+vo.=vc+icR (1)
所以,要检测负载电流及电感电流的大小,只要检测RC网络电容上的电压的大小就行了,这种办法能够很方便、简易、没有损耗地对电流进行采样。
IL1、IL2分别是L-和L2流过电流的平均值,亦即两路输出电流平均值;
R1及R2是滤波电感的等效串联电阻,当在工艺上设计并联电源每路输出电感基本上一样时,可以认为R1=R2。
因此,要控制两路电流均流,即要求IL1=IL2,于是,只要控制Vc1=Vc2就行了。所以,电容C1及C2上的电压Vc1和Vc2能代表两路电流IL1及IL2大小,可用来进行均流控制。
输出阻抗法即Droop(下垂,倾斜)法调节开关变换器的外特性倾斜度(即调节输出阻抗),以达到并联模块接近均流的日的。这种方法是一种简单的大致均流的方法,精度比较低。
主从法适用于电流型控制的并联开关电源系统中。这种均流系统中有电压控制和电流控制,形成双闭环控制管理系统。这种方法要求每个模块问有通讯,所以使系统复杂化,并且当主模块失效时,整个电源系统便不能工作。
平均值均流每个并联模块的电流放大器输出端接一个相同的电阻到一条公共母线上,形成平均值母线。当某模块电压比母线电压高时,输出电压下降,反之亦然。
最大值均流法和平均值均流法相似,区别只是每路电流通过一个二极管连到一条公共母线上。这种方法其实质是一种“民主均流”方法,电流最大的那个模块自动成为主模块,其他模块为从模块,从而“自动主从控制”。
平均值均流和最大值均流法的均流母线断开或者开路都不可能影响各个电源模块独立工作,并且是自动均流方法,均流精度比较高。
图4为常见均流方法的原理图。如果均流母线是并联模块电流的平均值,则是平均值均流法;如果是并联模块电流的最大值,则是最大值均流法;如果均流母线是并联模块中的主模块的电流,则就是主从均流法。但是,在这些均流方法中,每个模块都需要有一套独立的PWM控制环。
本文提出的方案是基于前所述的每路加一个简单的RC网络检测其分配的电流的大小。电容C两端的电压平均值就可以表征这路模块的电流的大小,所以,对系统来进行均流控制就是对各路RC网络C上电压进行均压。其均流原理图如图5所示。
通过检测RC网络中C两端的电压,作为电流信号,几路电流信号(本例只有两路)通过一个相同的电阻就得到了平均值均流母线,平均值均流母线电压值与负载有关,表征负载电流的大小。
然后将每路采样来的电流信号与母线电压比较,得到误差信号,去修正输出电压参考信号,从而对PWM控制器的占空比输出进行微调,达到均流和稳压的目的。
样机是一台DC5V输入,2V/40A输出的4路Buck并联的开关电源,工作频率为200 kHz,带上满载做测量每一路电流输出,均流效果好,误差在2%以下,电源输出稳定。当输出电流越大,即大功率并联的电源系统中,均流效果越好。
这种方案使电流检测很方便,能高效率、低成本、简单、方便地实现并联系统的均流。
多数LED应用利用功率转换和控制组件连接各种功率源,如交流电线、太阳能电池板或电池,来控制LED驱动装置的功率耗散。对这些接口加以保护,防止它们因过流和过温而受损,常常用到具有可复位能力的聚合物正温度系数(PPTC)组件(图)。可以与功率输入串联一个PolySwitch LVR组件,防止因电气短路、电路超载或用户误操作而受损。此外,放在输入端上的金属氧化物变阻(MOV)也有助于LED模块内的过压保护。典型开关电源保护电路:
高频开关稳压电源由于具有效率高、体积小、重量轻等突出优点而得到了广泛应用。传统的开关电源控制电路普遍为电压型拓扑, 只有输出电压单闭控制环路, 系统响应慢, 线性调整率精度偏低。随着PWM 技术的快速的提升产生的电流型模式拓扑很快被大家认同和广泛应用。电流型控制管理系统是电压电流双闭环系统, 一个是检测输出电压的电压外环, 一个是检验测试开关管电流且具有逐周期限流功能的电流内环, 具有更加好的电压调整率和负载调整率, 稳定性和动态特性也得到明显改善。UC3842是一款单电源供电, 带电流正向补偿, 单路调制输出的高性能固定频率电流型控制集成芯片。本设计采用UC3842 制作一款1 kW 铅酸电池充电器控制板用的辅助电源样机, 并对其进行工作环境下的测试。
UC3842 内部组成框图如图1所示。其中: 1 脚是内部误差放大器的输出端, 通常此脚与2 脚之间接有反馈网络, 以确定误差放大器的增益和频响。2 脚是反馈电压输入端, 将取样电压加到误差放大器的反相输入端, 再与同相输入端的基准电压( 一般为2.5 V) 作比较, 产生误差电压。3 脚是电流检测输入端, 与取样电阻配合, 构成过流保护电路。当电源电压异常时, 功率开关管的电流增大, 当取样电阻上的电压超过1 V时, U C3842 就停止输出, 可以轻松又有效地保护功率开关管。4 脚外接锯齿波振荡器外部定时电阻与定时电容, 决定振荡频率。5 脚接地。6 脚是输出端, 此脚为图腾柱式输出, 能提供1A 的峰值电流, 可驱动双极型功率开关管或MOSFET.7 脚接电源, 当供电电压低于16 V 时, UC3842 不工作, 此时耗电在1 mA 以下。输入电压能够最终靠一个大阻值电阻从高压降压获得。芯片工作后, 输入电压可在10~ 30 V 之间波动, 低于10V 则停止工作。工作时耗电约为15 mA.8 脚是基准电压输出, 可输出精确的5 V 基准电压, 电流可达50mA.由图1( b) 可见, 它最重要的包含误差放大器、PWM 比较器、PWM 锁存器、振荡器、内部基准电源和欠压锁定等单元。U C3842 的电压调整率可达0.01% , 工作频率为500 kHz.
此次设计的反激变换器是从1 kW 充电器全桥开关电源初级侧高压直流部分取电作为输入电压。反激变换器预定技术指标如下。
如图2 所示, 电路由主电路、控制电路、启动电路和反馈电路4 部分所组成。主电路采取单端反激式拓扑,它是升降压斩波电路演变后加隔离变压器构成的,该电路具有结构相对比较简单, 效率高, 输入电压范围宽等优点。工作模式选择在断续模式到临界模式之间。功率开关管选用N??MOSFET STP9NK70ZFP( 700 V, 5 A)。次级整流二极管选用肖特基二极管SR540( 40 V, 5 A) 。